Hydrogen bonding to alkanes: computational evidence.

نویسندگان

  • Solveig Gaarn Olesen
  • Steen Hammerum
چکیده

The structural, vibrational, and energetic properties of adducts of alkanes and strong cationic proton donors were studied with composite ab initio calculations. Hydrogen bonding in D-H(+)...H-alkyl adducts contributes to a significant degree to the interactions between the two components, which is substantiated by NBO and AIM results. The hydrogen bonds manifest themselves in the same manner as conventional hydrogen bonds, D-H bond elongation, D-H vibrational stretching frequency red shift and intensity increase, and adduct stabilization. The alkane adducts also exhibit elongation of the C-H bonds involved and a concurrent red shift, which is rationalized in terms of charge-transfer interactions that cause simultaneous weakening of both the O-H and C-H bonds. Like other dihydrogen-bonded adducts, the adducts possess a bent structure and asymmetric bifurcated hydrogen bonds. The hydrogen bonds are stronger in adducts of isobutane and in adducts of stronger acids. Intramolecular hydrogen bonding in protonated long-chain alcohols manifests itself in the same manner as intermolecular hydrogen bonding and can be equally strong.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Principles of Drug Action 1, Spring 2005, Alkanes

Hydrocarbons are organic compounds consisting of C-C and C-H bonds. Carbon has a valence of four and thus requires four electrons or bonds to complete its octet in the neutral state. Hydrogen has a valence of one and thus requires a single electron or bond to complete its “duet” in the neutral state. Thus in hydrocarbons carbon can form neutral bonding arrangements by forming single bonds with ...

متن کامل

Computational study of the intramolecular proton transfer between 6-hydroxypicolinic acid tautomeric forms and intermolecular hydrogen bonding in their dimers

This paper is a density functional theory (DFT) calculation of intramolecular proton transfer (IPT) in 6-hydroxypicolinic acid (6HPA, 6-hydroxypyridine-2-carboxylic acid) tautomeric forms. The transition state for the enol-to-keto transition is reported in the gas phase and in four different solvents. The planar and non-planar dimer forms of 6HPA keto and enol, respectively, were also studied i...

متن کامل

Hydrogen Bond Control of Active Oxidizing Species in Manganese Porphyrin Hydroxylation Catalysts

Some meso-tetra aryl porphyrinato manganese (III) acetate or chloride complexes including meso-tetraphenyl porphyrinato manganese (III) chloride (TPPMnCl), meso-tetrakis(2,3-dimethoxyphenyl)porphyrinato manganese(III) acetate, (T(2,3-OMeP)PMnOAc) and meso-tetrakis(pentaflourophenyl)porphyrinato manganese (III) acetate (TPFPPMnOAc) were synthesized. These porphyrins were used as catalyst in the ...

متن کامل

Hydrocarbon Structure and Chemistry: Aromatics

Hydrocarbons are organic compounds consisting of C-C and C-H bonds. Carbon has a valence of four and thus requires four electrons or bonds to complete its octet in the neutral state. Hydrogen has a valence of one and thus requires a single electron or bond to complete its "duet" in the neutral state. Thus in hydrocarbons carbon can form neutral bonding arrangements by forming single bonds with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 113 27  شماره 

صفحات  -

تاریخ انتشار 2009